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Abstract

Paper presents ray approach to seismic wave tracing in spherically symmetric Earth model. Sim-
ulation algorithm is discussed with its implementation in C++ and other modern programming
languages. Paper shows possible extensions of implementation to support tracking wave amplitude.
Di�erent scienti�cally and educationally important result are presented and discussed.
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Simulation of wave fronts and amplitudes of P and S-waves in spherically symmetric Earth model
using ray approach
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Chapter 1

Introduction

The interior of the Earth has very complicated structure, and its details are still poorly discov-
ered. There are numerous methods of surveying the inside of the Earth, but most of this methods
can reach only to the shallowest layers. Among others the following methods are available [1]:

• Boreholes - most precise method that allow studying material with sub millimeter accuracy.
Downside of boreholes is small depth range - the deepest borehole has 12,345 km in depth.
Regional range of boreholes is also limited. Drilling is extremely expensive so this method is
no longer widely used.

• Gravimetry - measurement of the strength of a gravitational �eld allow to map di�erences in
Earth gravity �eld that correspond to di�erent rocks density. Interpretation of gravitational
data is complicated and ambiguous work. As in case of boreholes depth range is also limited.

• Magnetotellurics - measurement of electric and magnetic anomalies. This method allows to
survey subsurface structure up to 30 km deep.

There are other surveying method reaching at most meters or tens of meters in depth: ground
penetrating radar, electrical resistivity tomography.

Earth is an extremely large object measuring 6371 km in radius. That means that methods
mentioned above let scientist to study less than 1.5% of Earth's volume. Analyzing seismic waves
is the only method of surveying whole Earth.

Seismic surveying allows scientists to create models of the Earth's interior [2]. These models are
always a simpli�cation of real structure. There are several types of models: 1D (one dimensional,
examples: [6, 3, 4]), 2D (example: [5]), 3D (example: [7]) or even more detailed anisotropic 3D [9].

For the whole Earth only two of those are useful: 1D, where parameters depend only on depth
(or radius) and 3D, where parameters depend on geographic location and depth. 2D models can be
used for local pro�les where parameters depend on position on the pro�le and depth. Anisotropic
3D models require large amount of experimental data, so they can only by created for local areas.

In this paper 1D model of spherically symmetric Earth will be discussed. There are several
parameters that can by analyzed and put into Earths model such as: P-wave speed, S-wave speed,
pressure, density, Lamé parameters etc. These parameters are related between each other. Because
in seismic methods wave traveltime is the measured parameter and distance is known, P and S
wave speeds are fundamental parameters for all seismic models.

As mentioned above a seismologist's job is to improve model accuracy and quality for better
understanding Earth interior. This process requires, among others, simulating wave propagation
through the model itself. This is one of multiple reasons for developing di�erent algorithms of
wave propagation simulation. This paper discusses algorithm working in 1D Earth model. Possible
application of algorithm also will be discussed.
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Chapter 2

1D Earth model

Despite the fact that 1D models are ex-
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Figure 2.1

P and S-wave speed in Preliminary Reference Earth
Model. Dashed lines indicate layers boundaries.

treme simpli�cation of Earth structure they
are useful and valuable. Deep structure of
Earth is spherically symmetric with good
approximation while shallow layers di�er-
entiate with location (for example conti-
nent vs. ocean). 1D model are constructed
as mean value approximation. 1D model
describes Earth as a perfect sphere.

Among many di�erent 1D Earth mod-
els two are most commonly used: Prelimi-
nary Reference Earth Model (PREM) and
iasp'91. Construction of PREM was con-
sidered a milestone in seismology. Because
of that PREM will be used for wave simu-
lating further in this paper.

P and S-wave speed described in PREM
are shown on �gure 2.1.

Earth's interior is composed of layers
within which parameters change smoothly.
However on layers boundaries changes
might by rapid and step-like. There are
several important boundaries with elastic
parameters discontinuity that cause re�ec-
tion and wave conversions described in sec-
tion 3.3. Among others there are signi�cant
boundaries: between inner and outer core,
which is liquid (S-wave does not propagate
in liquid), and between outer core and man-
tle. In�uence of mentioned discontinuities
to wave propagation can be observed on �g-
ure 6.1 on page 11.
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Chapter 3

Simulation method

Methods of simulating wave propagation can be divided into two groups: those based on solving
di�erential equations and others.

Because in general a model is a set of discrete values analytical solutions for di�erential equa-
tions are not possible. Numerical methods have to be introduced: �nite element method or �nite
di�erence method. Please refer to other sources for detailed explanation of this methods.

Other method (used in this paper) is ray approach [10] - method of tracking path of single ray
among model, where it can be refracted, re�ected or converted. Ray is always perpendicular to
wave front and has mathematical zero-width. It might be compared to laser beam.

There are several signi�cant di�erences between this methods:

• Ray approach does not simulate wave e�ects such as di�raction

• Ray approach requires additional steps to simulate amplitude due to energy dissipation

• Ray approach allow to track any wave phase across model (for example tracking PKPPcP
phase)

In general �nite di�erences and �nite elements are more general methods, but ray approach
brings better understanding of processes that are involved during wave propagation: refraction,
re�ection, conversion [2, 10].

3.1 Refraction

Seismic wave traveling through media obeys
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Figure 3.1

Snell's law

Fermat's principle - path taken between two
points in medium is the path of minimal travel-
time (in general extreme traveltime). This princi-
pal is widely used in optics as Snell's Law:

sin θ1
sin θ2

=
v1
v2

Where θ1 is angle of incidence, θ2 refracted
angle, and v1, v2 wave speeds in �rst and sec-
ond medium. Notice that refraction occurs ev-
erywhere where wave speed changes, not only at
layers boundaries.

3.2 Re�ection

Always some of wave energy is being re�ected from the interface. If critical angle of incidence is
exceeded all energy is being re�ected from the interface. Such a situation occurs when sin θ1 > v1

v2
.

Re�ection is observed at layers boundaries only.
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3.3 Conversion

Refraction and re�ection are su�cient when there is only one type of wave in the medium.
While simulating seismic waves propagation two wave types has to be processed: P-wave and
S-wave.

In continuous medium those two types of waves can propagate independently, while on interface
with contrast of elastic parameters they can transform P-wave� S-wave. Figure 3.2 shows possible
conversions for solid - solid interface, while �gure 3.3 shows conversions for solid - liquid interface.
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At interface with contrast of elastic parameters wave conversion occurs. Figure shows possible
conversions for solid-solid interface. One incident wave is converted to up to four new waves:

re�ected, refracted, converted re�ected and converted refracted. Depending on situation some of this
waves may not be created (for example when critical angle is exceeded) or may have negligibly small

energy.
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Possible conversions for solid-liquid interface. S-waves cannot propagate in liquid medium.
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Chapter 4

Algorithm

Tracing of seismic ray in 1D model can be achieved by an iterative numeric algorithm. For ray
to by calculated several parameters needs to be given:

• 1D speed model - algorithm needs to calculate speed value at current depth

• Type of wave - P and S waves are calculated separately

• Coordinates of starting point

• Direction of ray propagation (at starting point)

• Calculating step in seconds

Algorithm is divided into two signi�cant parts: ray calculating and control. The role of control
algorithm is to invoke ray calculation with proper arguments and collect its results.

Implementation in C++ is shown in listing A.1 on page 17.

Single ray calculation is terminated when one or more of following conditions are satis�ed:

• Reached surface

• Reached layer boundary

After termination results (coordinates, direction, time) are returned to main control algorithm,
which decides how to process results. At this moment all wave transforms need to be calculated.
Depending on situation up to four new rays might be created at this point. Parameters of new
rays are placed in queue to by calculated.

The control algorithm need to have some limits. Without those program execution would be
in�nite (at the end of one ray at least one ray is created). There are number of possible limits
depending on expected results:

• Traveltime limit (if one wants to study only rays propagating no longer then given time)

• Conversions limit (if one is interested only in refracted rays, or re�ected from certain layer
only)

• Amplitude (energy) limit (if one wants to study only rays with amplitudes above given value)

• Other (for example combination of mentioned above)
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Chapter 5

Implementation

Several implementations of described algorithm were prepared in di�erent modern programming
languages for performance comparison:

MATLAB - the best environment for de-
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Traveltime (source at 371 km depth).

veloping code. It's �exibility allows to make
quick analysis of changes in algorithm or its
implementation. Various data visualization
tools help with understanding the results.
MATLAB code was de�nitely the slowest
one - up to 15 times slower than C++.
Finally MATLAB was used for preparing
plots of computed data.

FORTRAN - traditional programming
language for solving numeric problems.
This implementation was done to verify
opinion, that FORTRAN is faster than any
other high level programming language. Fi-
nally proved to be as fast as C++, but not
noticeably faster.

C++ - popular and e�cient programming
language, current standard for di�erent ap-
plications. Final implementation was done
in C++ and tested on various platforms in-
cluding PC/Windows, PC/Linux and even
ARM/linux.

C for CUDA - this implementation was
done for experimental reasons only. CUDA
- Compute Uni�ed Device Architecture is
computing engine in graphic processing
unit by Nvidia. Graphics processors are
parallel units (up to 2048 simultaneous
threads per processor) . Ray tracing algo-
rithm can by parallelized (each thread com-
putes one ray, multiple rays are computed at the same time). Implementation of ray tracing al-
gorithm took over two weeks of work, but results was outstanding: over 700 times faster than
computer CPU. This computations where done in Interdisciplinary Center for Mathematical and
Computational Modeling (ICM) at University of Warsaw within grant number G44-26.

Implementations of the algorithm may vary due to di�erent output and expected result. Dif-
ferent result examples are shown in next chapter.

One of the simplest implementations of the algorithm results in computing traveltime data for
P and S-wave in function of epicentral distance (0-180 deg). Source code of this implementation in
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C++ is shown on listing in appendix A. Selectable number of rays are calculated (ex. 1024 rays).
Half of them are P-wave, half S-wave. Ray starting directions are linearly spaced between 0 and
360 degree. Each ray is propagated until it reaches surface. At this moment time and angular
distance are saved to �le. Results are shown on �gure 5.1.

5.1 Possible expansions

As mentioned earlier implementation of the algorithm can be modi�ed to suit any needs con-
nected with ray tracing of seismic wave. Two very important modi�cations are re�ection / trans-
mission coe�cients and amplitude simulation.

Amplitude (or energy) decreases because of two di�erent physical phenomenons: geometrical
spreading of wave front and damping. Both can be included in every iteration of ray tracing. If
energy or amplitude is calculated it can be used as limit for ending computations. Calculating
e�ect of damping requires additional information in model - Q factor.

Re�ection and transmission coe�cients can be calculated for each of transformed waves. For-
mulas are complicated and di�erent for all situations (solid - solid, liquid - solid, solid - liquid
and even liquid - liquid). There are several di�erent implementations and simpli�cation of this
formulas [2]. In general coe�cients are parameters of speeds, densities on both sides of interface
and angle of incident. Figure 5.2 shows example relation of coe�cients values to incident angle.

Examples of both possible expansions will be shown I chapter 6.
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Amplitude and energy coe�cients calculated for incident S-wave at boundary between Transition
Zone and Lower Mantle (so called "670 km" boundary) [8]. Note that some energy (and amplitude)

is always re�ected, while refracted waves exist only with incident angles under critical. Energy
coe�cients always sum up to 1 (no energy is lost for conversion itself), however amplitude

coe�cients may exceed 1, as in given example.

8



5.2 Performance and accuracy

Discussed iterative algorithm has
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Accuracy dependence on time step example. See text for
details.

accuracy that depend on two factors:
type of data used in implementa-
tion (single or double precision) and
length of time step.

While �rst is machine depen-
dent, second factor can be changed
by user. At every program itera-
tion one new ray coordinate is cal-
culated. Length of step depends on
wave speed and mentioned time step
(distance equals speed times time).

Figure 5.3 shows results for
three di�erent time steps: 1 second
(square), 0.5 second (triangle), 0.05
second (dot). All rays calculated in
the same medium where speeds in-
creases with depth. The shortest
time step, the better ray path accu-
racy.

Ray calculation consumes 99% of
total execution time. Every ray step
takes the same amount of processor
time. As result of that overall execu-
tion time depend mainly on chosen
time step (the dependence is linear).

Other important factor that in-
�uence performance is size of output
data. A shown in example in section
6.1 size of data saved during execu-
tion my by much bigger then operat-
ing memory size. In that case saving
to hard drive is involved, which is not
e�cient.

As mentioned before construc-
tion of algorithm allows use of par-
allel computing techniques. While
Nvidia CUDA is ultimate parallel solution, implementation and compatibility is hard. Fortu-
nately other methods of parallelization are available: for example OpenMP. This methods are
much simpler to implement (and does not require special hardware like CUDA), but performance
gain factor is only 2 or 3 for standard workstation 1.

1Intel Core I7 (2.93 GHz) processor with 8GB of operating memory and Windows 2008 Server operating system.
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Chapter 6

Results

There are multiple output possibilities, depending on need. Useful information can be ex-
tracted from simulation for various further analysis. In this chapter three examples are presented.
Corresponding source codes are available for request - please contact the author.

6.1 Example 1

In this example full simulation of wave propagation was computed. All converted rays were
processed with corresponding re�ection / transmission coe�cients.

This computation took over 24 hours on standard workstation computer. Algorithm was mod-
i�ed to record information about every wave front position and amplitude every second for 2500
seconds from source time.

Record �le was over 110 GB in size. Additional program was prepared to split record �le to
smaller �les, each containing information about rays positions and amplitudes in one second. 2500
�les were generated.

Data prepared this way made it possible to prepare animation of wave propagation inside Earth.
Animation was used multiple times for educational purposes during lectures (for example "Physics
of the Earth's interior" - lecture by prof. Grad for second and third year students).

Figure 6.1 shows four stages of wave propagation: after 250, 500, 750, 1000 seconds from source
time.

6.2 Example 2

Code described in section 6.1 was modi�ed to record only data about rays reaching surface
instead of all rays data. This information allows creation of traveltime chart (see �gure 5.1 for
simpli�ed example).

Result shows relation between wave traveltime and distance on earth surface. Figure 6.2 shows
traveltime for times from 0 to 2500 seconds for all phases. That kind of plot is not very useful due
to large amount of phases displayed.

Figure 6.3 shows the same set of information with additional amplitude value, that is presented
as color intensity.

For certain purposes code could be modi�ed to record data about particular phases only. That
kind of data may by used when searching and identifying phases on seismographs. See example
shown on �gure 6.4.
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1000 s750 s

500 s250 s

Figure 6.1

Position of wave fronts after 250, 500, 750 and 1000 seconds from event time. Event located at
depth of 371 km. Green color corresponds to P-waves while red to S-waves. Note lack of S-waves in
area of liquid outer core. Despite that in inner core (solid) S-waves are propagating, because of
conversion from P-wave to S-wave on boundary between inner and outer core. Color intensity on

plot corresponds to calculated ray amplitude.
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Figure 6.2

Synthetic hodograph from 0 to 2500 seconds without reduction. All phases. Event located at depth
of 371 km.

Figure 6.3

Synthetic traveltime from 0 to 2500 seconds without reduction. All phases. Event located at depth
of 371 km. Color intensity corresponding to amplitude.
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Surface waves

P

Figure 6.4

Seismic section (only Z-component displayed) recorded by USArray network after earthquake near
by Honsiu on 11/03/2011 (magnitude 8.9, located at depth of 24 km). Main P-wave (green) and

S-wave (red) phases calculated by program.
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6.3 Example 3

Other example of program utilization is map of seismic waves phases in time shown on �gure
6.5. This result has, along obvious educational, practical application. It may be used to verify
best locations for seismic stations designed to record certain wave phases.

800 s

500 s

1150 s

Figure 6.5

Map showing range of P and S-wave after 500, 800 and 1150 seconds from hypothetical earthquake
located near by Honsiu at depth of 371 km. Dashed green line on second map indicates range of
P-wave propagating through mantle. Note that at this point P-wave front is not visible. Second

dashed line on third map indicates beginning of area where P-wave propagating through core can be
recorded.
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Chapter 7

Conclusions

Simple seismic ray trancing algorithm was developed and successfully implemented. Various
extensions and modi�cations were investigated and found useful. There are several scienti�c ap-
plication of such a program, but they can be achieved using by existing programs developed by
di�erent universities around the world (note that given results are the same and accurate - di�er-
ence lays in graphic interface and usability).

The main and most important use of developed program is educational. Generated results have
great educational value for high school and university students, and will be placed on Institute of
Geophysics web page, so teachers could download and use them.

But watching result itself is only the beginning. Implementing algorithm or modifying exist-
ing implementation brings profound understanding of wave propagation process. This allows full
comprehension of seismic survey methods: shallow seismic source (there are no earthquakes deeper
than 700 km under ground) and registration on surface allow to study whole Earths body because
of speci�c wave route caused by refraction and re�ection.

In my opinion shown algorithm implementation should become part of student education for
those who are interested in choosing seismology as their career path.
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Appendix A

Implementation: source code in C++

Compilation of given source code was tested on Windows machine with g++ (GCC) version
4.5.0 by Free Software Foundation, Inc.

Execution of compiled program does not require any input parameters. After execution program
will report time of execution and will save result to �le called result.txt. Result �le should contain
3 numbers in every row separated with tabulator. First value is epicenter distance, second is time
and third is type of wave (1: P-wave, 2: S-wave). Beginning of result �le shown on listening A.2.

Listing A.1

C++ implementation source code

1 #include <time.h>
2 #include <stdio.h>
3 #include <math.h>
4 #include <stdlib.h>
5
6
7 // Structure of ray input parameters:
8 struct input_t
9 {
10 float x;
11 float y;
12 float fi;
13 float time_start;
14 int WaveType;
15 };
16
17 // Structure of ray output parameters:
18 struct output_t
19 {
20 int reason;
21 float time;
22 float dist;
23 };
24
25 input_t *input;
26 output_t *output;
27
28 // Definitions of PREM P and S-wave speed in function of depth:
29 float PREM_depth[56] = {0, 200, 400, 600, 800, 1000, 1200, 1221.5, 1221.5, 1400, 1600,

1800, 2000, 2200, 2400, 2600, 2800, 3000, 3200, 3400, 3480, 3480, 3600, 3630, 3630,
3800, 4000, 4200, 4400, 4600, 4800, 5000, 5200, 5400, 5600, 5600, 5701, 5701, 5771,
5771, 5871, 5971, 5971, 6061, 6151, 6151, 6221, 6291, 6291, 6346.6, 6346.6, 6356,
6356, 6368, 6368, 6371};

30 float PREM_vp[56] = {11266, 11256, 11237, 11206, 11162, 11105, 11036, 11028, 10356,
10250, 10123, 9985.5, 9835, 9668.6, 9484.1, 9278.8, 9050.1, 8795.7, 8513, 8199.4,
8064.8, 13717, 13688, 13680, 13680, 13447, 13245, 13016, 12784, 12545, 12293, 12024,
11734, 11416, 11066, 11066, 10751, 10266, 10158, 10158, 9645.9, 9134, 8905.2,

8732.1, 8559, 7989.7, 8033.7, 8076.9, 8076.9, 8110.6, 6800, 6800, 5800, 5800, 1450,
1450};

31 float PREM_vs[56] = {3667.8, 3663.4, 3650.3, 3628.3, 3597.7, 3558.2, 3510, 3504.3, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7264.7, 7265.8, 7266, 7266, 7188.9, 7099.7,

7010.5, 6919.6, 6825.1, 6725.5, 6618.9, 6563.7, 6378.1, 6240.5, 6240.5, 5945.1,
5570.2, 5516, 5516, 5224.3, 4932.6, 4769.9, 4706.9, 4643.9, 4418.9, 4443.6, 4469.5,
4469.5, 4490.9, 3900, 3900, 3200, 3200, 0, 0};

32
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33 // Time step definition
34 float dt = .01;
35
36 // Function returning sign of given number:
37 float sign(float num)
38 {
39 if(num >= 0)
40 return 1.0;
41 if(num <= 0)
42 return -1.0;
43 return 0.0;
44 }
45
46 // Function calculating (interpolating) P or S-wave speed as given depth from PREM model

:
47 float FindSpeed(float depth, int WaveType)
48 {
49 int a;
50 if(WaveType == 1) // P-wave
51 {
52 for(a=0;a<55;a++) // Loop through model given values
53 {
54 if(depth >= PREM_depth[a] && depth < PREM_depth[a+1]) // if depth between values

form model
55 {
56 return (((depth-PREM_depth[a])*PREM_vp[a+1] + (PREM_depth[a+1]-depth)*PREM_vp[a

])/(PREM_depth[a+1]-PREM_depth[a]))/1000.0; // Calculate P-wave speed at
given depth

57 }
58 }
59 }
60 if(WaveType == 2) // S-wave
61 {
62 for(a=0;a<55;a++) // Loop through model given values
63 {
64 if(depth >= PREM_depth[a] && depth < PREM_depth[a+1]) // if depth between values

form model
65 {
66 return (((depth-PREM_depth[a])*PREM_vs[a+1] + (PREM_depth[a+1]-depth)*PREM_vs[a

])/(PREM_depth[a+1]-PREM_depth[a]))/1000.0; // Calculate S-wave speed at
given depth

67 }
68 }
69 }
70
71 return 0.0; // Depth out of model range or other exception
72 }
73
74 // Function preventing from calculation imaginary trigonometric functions
75 float ReduceSinf(float value)
76 {
77 if(value > 1)
78 return 1.0;
79
80 if(value < -1)
81 return -1.0;
82
83 return value;
84 }
85
86 // Function calculating single ray
87 void CalcRay(input_t *input, output_t *output, int tid)
88 {
89 float x1 = input[tid].x;
90 float y1 = input[tid].y;
91 int typ = input[tid].WaveType;
92 float time = input[tid].time_start;
93 float x2 = cos(input[tid].fi);
94 float y2 = sin(input[tid].fi);
95 float r1 = sqrt(x1*x1+y1*y1);
96 float M, sinf, cosf, r2, v2, v1, f1, sinf2, f2, f, theta, ndx, ndy;
97
98 while(r1 < 6367) // Calculate untill surface reached
99 {
100 // Calculating auxiliary values
101 time += dt;
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102 M = sqrt(x1*x1+y1*y1) * sqrt(x2*x2+y2*y2);
103 sinf = (x1*y2-y1*x2)/M;
104 cosf = (y1*y2+x1*x2)/M;
105 r1 = sqrt(x1*x1+y1*y1);
106 r2 = sqrt((x1+x2)*(x1+x2)+(y1+y2)*(y1+y2));
107 v2 = FindSpeed(r2,typ);
108 v1 = FindSpeed(r1,typ);
109
110 if(v2 == 0) // Reached area where wave cannot propagate (for example S-wave in

liquid medium)
111 {
112 output[tid].reason = 30; // Set reason of stopping calculation
113 output[tid].time = 0;
114 output[tid].dist = 0;
115 return; // Stop calculation
116 }
117
118 // Calculate refraction
119 f1 = asin(ReduceSinf(sinf));
120 sinf2 = sin(f1) * (v2/v1);
121 f2 = asin(ReduceSinf(sinf2));
122 f = sign(cosf)*(f2-f1);
123 theta = atan2(y2,x2);
124
125 // Calculate new coordinates
126 ndx = v1*dt*cos(theta+f);
127 ndy = v1*dt*sin(theta+f);
128
129 // Goto new coordinates and calculate next step
130 x1 = x1 + ndx;
131 y1 = y1 + ndy;
132 x2 = ndx;
133 y2 = ndy;
134 }
135
136 // After reaching surface return time and epicentral distance
137 output[tid].reason = 10;
138 output[tid].time = time;
139 output[tid].dist = atan2(y1,x1);
140
141 }
142
143 // Main function:
144 int main(void)
145 {
146
147 int N = 1024; // Number of rays to calculate
148
149 FILE * pFile; // File structure for data output
150
151 // Execution time is recorded:
152 clock_t start, end;
153 start = clock();
154
155 // Allocating memory for input and output structs:
156 input = (struct input_t*)malloc(N*sizeof(struct input_t));
157 output = (struct output_t*)malloc(N*sizeof(struct output_t));
158
159 // Generating start values for all rays:
160 for (int i=0; i<N/2; i++) // Fist half of rays
161 {
162 input[i].fi = (3.14)-i*(2*3.14/(N/2)); // Angular distribution
163 input[i].x = 6000; // Starting coordinates
164 input[i].y = 0;
165 input[i].time_start = 0; // All rays start in event time
166 input[i].WaveType = 1; // P-wave
167 }
168 for (int i=N/2; i<N; i++) // Second half of rays
169 {
170 input[i].fi = (3.14)-i*(2*3.14/(N/2)); // Angular distribution
171 input[i].x = 6000; // Starting coordinates
172 input[i].y = 0;
173 input[i].time_start = 0; // All rays start in event time
174 input[i].WaveType = 2; // S-wave
175 }
176
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177 start = clock(); // Start execution clock
178
179 // Calculate rays (one at the time):
180 for (int i=0; i<N; i++)
181 {
182 CalcRay(input,output, i);
183 }
184
185 end = clock(); // Stop execution clock
186
187 printf("czas:\t%f\t", (double)(end-start)/CLOCKS_PER_SEC); // Report execution time
188
189 start = clock(); // Start clock for result saving
190
191 pFile = fopen ("result.txt","w"); // Open result file
192
193 // Save result of every ray to file:
194 for (int i=0; i<N; i++)
195 {
196 // Save only rays that reached surface:
197 if(output[i].reason == 10)
198 {
199 // Save value to file:
200 fprintf(pFile,"%f\t%f\t%d\n",output[i].dist,output[i].time,input[i].WaveType);
201 }
202 }
203
204 fclose (pFile); // Close file
205
206 end = clock(); // Stop clock
207
208 printf( "%f\n", (double)(end-start)/CLOCKS_PER_SEC); // Report saving time
209
210 // Free memory:
211 free(input);
212 free(output);
213
214 // End
215 return 0;
216 }

Listing A.2

Beginning of result.txt generated by program

1 3.139909 1165.165527 1
2 3.100383 1165.005371 1
3 3.044013 1164.284668 1
4 3.003553 1163.393799 1
5 2.955854 1161.952393 1
6 2.912596 1160.270752 1
7 2.867654 1158.178711 1
8 2.819653 1155.526123 1
9 2.770826 1152.453125 1
10 2.718101 1148.669434 1
11 2.663589 1144.295166 1
12 2.595021 1138.249268 1
13 2.506549 1129.680908 1
14 2.498482 1142.273193 1
15 2.534361 1136.257324 1
16 2.635098 1148.018799 1
17 2.613816 1145.276123 1
18 2.593200 1142.433350 1
19 2.574962 1139.750732 1
20 2.557638 1137.108154 1

20



Bibliography

[1] Poradnik pracownika sªu»by geologicznej. Wydawnictwo Geologiczne, 1971.

[2] Keiiti Aki and Paul G. Richards. Quantitative Seismology. University Science Books, 2002.

[3] Adam M. Dziewonski and Don L. Anderson. Preliminary reference earth model. Physics of

The Earth and Planetary Interiors, 25(4):297 � 356, 1981.

[4] M. Grad and M. Polkowski. Seismic wave velocities in the sedimentary cover of poland -
borehole data compilation. Acta Geophysica. Accepted.

[5] A. Guterch, M. Grad, H. Thybo, and G. R. Keller. Polonaise '97 � an international seismic
experiment between precambrian and variscan europe in poland. Tectonophysics, 314(1-3):101
� 121, 1999.

[6] B. L. N. Kennett and E. R. Engdahl. Traveltimes for global earthquake location and phase
identi�cation. Geophysical Journal International, 105(2):429�465, 1991.

[7] Dimitri Komatitsch, Gordon Erlebacher, Dominik Göddeke, and David Michéa. High-order
�nite-element seismic wave propagation modeling with mpi on a large gpu cluster. Journal of
Computational Physics, 229(20):7692 � 7714, 2010.

[8] Jonathan M. Lees. Zoeppritz equations: R package, 2009.

[9] P. �roda. Seismic anisotropy of the upper crust in southeastern poland - e�ect of the com-
pressional deformation at the eec margin: Results of celebration 2000 seismic data inversion.
Geophysical Research Letters, 33, 2006.

[10] V. �ervený. Seismic Ray Theory. Cambridge University Press, September 2005.

21


