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Abstract

Two years of continuous seismic recordings from over 80 stations in Poland of the PASSEQ 2006-
2008 experiment is analyzed to locate unknown local seismic events. Paper presents detection
(Carl Johnson’s STA/LTA algorithm) and location procedure (grid search method). Four unknown
events, three in Baltic Sea and one near Jarocin, are detected and localized.
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Chapter 1

Introduction

1.1 Tectonics of Poland

Poland is located in the junction of three major tectonics units: the Precambrian East
European Craton, the Palaeozoic Platform of Central and Western Europe, and the Alpine
orogen represented by the Carpathian Mountains.

Transition zone between the East European Craton and Palaeozoic Platform is called the Trans
European Suture Zone (TESZ). Location of the TESZ [Pharaoh, 1999] in Poland is shown in
Figure 1.1. The TESZ is a deep pocket of sediments, where the surface of Crystaline Basement is
sometimes deeper than 20 km. The geological structure between north-east and south-west Poland
varies in terms of thickness of sedimentary cover and in terms of seismic velocities. This transition
zone between two geologically different units contains series of faults which can be considered as a
source of seismic activity.
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Figure 1.1
Simplified tectonics of territory of Poland.
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1.2 Local seismicity in Poland

Poland is usually classified as a seismic free (aseismic) territory however every year there are
multiple seismic events induced by mining industry in Lubin-Głogów Copper Basin, Upper Silesia,
Rybnik Coal District and Bełchatów open-pit coal mine [Guterch, 2009]. These induced earth-
quakes have usually small magnitudes of M2.0 - M2.5. Small tectonic events occur regularly in
Carpathian Mountains. Figure 1.2 shows earthquakes in Poland from the European-Mediterranean
Seismological Centre on-line catalog from 2004 to 2012 and almost no seismic activity around the
Trans European Suture Zone is observed. Reason for that is a short time of observation and
significant distance to permanent seismic stations, so small local events could not be detected.

More information about activity in the area of the TESZ is given by historical catalogs of seismic
events [Guterch, 2009]. There were 69 known events from 1496 to 2005. For most of them there
are no instrumental data so their localization was done according to intensity data. The epicenters
of historical earthquakes are shown in Figure 1.3. Accumulation of seismic epicenters is well visible
in Carpathians and Sudets in south Poland, while other events are located (approximately) around
the TESZ.
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Figure 1.2
Location of epicenters of 2909 local earthquakes stored in European-Mediterranean Seismological
Centre on-line catalog (from 2004 to 2012). Two large event aggregations are in Lubin-Głogów

Copper Basin, Upper Silesia and Rybnik Coal District.
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Figure 1.3
Location of epicenters of 69 local earthquakes from 1496 to 2005.
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1.3 Polish seismological network

In period from 2006 to 2008 Polish permanent seismological network managed by Institute
of Geophysics P.A.S. included 6 broadband seismic stations. Station localization is shown in
Figure 1.4. Station WAR was located in the middle of Warsaw city where urban noise level was
very significant. For that reason WAR station was closed in October 2007, moved south-west and
renamed. New seismic station (BEL) stated operation in January 2009. A small number of stations
(WAR station can be omitted because of noise level) allowed recording and tracking larger local
and teleseismic events but station distribution was not sufficient to observe any local activity in
central and east Poland.

KSP and OJC observatory Station Bulletins of local and teleseismic events are regularly pre-
pared and published on-line. Every recorded wave (phase) is noted for known events. KSP station
is located close to Lubin-Głogów Copper Basin and Upper Silesia and Rybnik Coal District and
many local events from these areas are noted in KSP station bulletin. Local events in station
bulletin have specified origin time, regional location (Lubin, Silesia, etc.) and approximate magni-
tude. Note that for single station event detection and exact localization is not possible. Example
of station bulletin of KSP station is shown in Appendix A (Listing A.1).

At the end of each year Local Bulletin is published at Institute of Geophysics P.A.S. It contains a
summary of local seismicity in Poland during whole year. List of larger events, recorded at multiple
stations, is given with origin time and coordinates of epicenter. Example of Local Bulletin is shown
in Appendix A (Listing A.2).
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Figure 1.4
Location of permanent broadband seismic stations in Poland operating from 2006 to 2008.
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Chapter 2

PASSEQ 2006-2008 experiment

PASSEQ 2006-2008 (PASsive Seismic Experiment in TESZ) was passive seismic experiment
that took place in Central Europe in Germany, Czech Republic, Poland and Lithuania [Wilde-
Piórko et al., 2008]. The main aim of the project was to study a deep structure of lithosphere
and astenosphere around the Trans European Suture Zone. Almost 200 temporary broadband and
short-period stations were located in four countries - most of them in Poland.

Stations were deployed along the P4 refraction profile and symmetrically around it. Position
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Position of PASSEQ 2006-2008 and permanent stations in Poland. Note that not all station were

operational at the same time.
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Figure 2.2
Number of stations (PASSEQ 2006-2008 + permanent) operating in territory of Poland in years

2006, 2007 and 2008.

of stations in Poland is shown in Figure 2.1.
PASSEQ 2006-2008 was planned to use mostly teleseismic data for various analysis methods

including seismic tomography, receiver function, surface waves, SKS splitting, ambient noise and
others. Local events detection wasn’t primary goal of this project.

Due to limited founds and limited equipment availability PASSEQ 2006-2008 consisted of dif-
ferent types of seismic sensors and digitizers. Different stations in different time periods have
recorded with different data sampling rate (20Hz, 50Hz, 100Hz and 125Hz).

Stations were deployed in July 2006 and removed in August 2008, but for numerous reasons
(including technical) not all stations had continuous recordings during experiment. Figure 2.2
shows number of working stations in time and Figure 2.3 shows example of local event from Lubin
in August 18th 2006 recorded by PA64 seismic station.

All mentioned problems and project limitations made usage of PASSEQ 2006-2008 data a
challenging task. All raw data from stations was processed in GFZ in Potsdam, Germany. Data
in miniseed format was then available to all project participants. Unfortunately after data set was
processed in GFZ, some problems with data was acknowledged due to file formats and missing
data. Next chapter describes steps that was necessary to unify data before further analysis.

Figure 2.3
Example of local event from Lubin (M3.5) in August 18th 2006 recorded by PASSEQ 2006-2008

seismic station PA64. Three components are shown (north-south, east-west and vertical). Recording
is passed by bandpass filter with corner frequencies of 4Hz and 9.5Hz.
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Chapter 3

Data analysis

In this chapter data analysis, resulting in a list of automatically calculated local events will be
described. Data analysis is divided into multiple steps and for each step a computer program (or
script) was prepared. All significant source codes are provided so reader can analyze, understand,
repeat and improve whole process.

All scripts were prepared in cross platform languages such as python, MATLAB, php and
C++ (Figure 3.1). Calculations were also done step by step and information between steps was
exchanged mostly using ASCII text files for better process debugging. ObsPy - a Python Toolbox
for seismology/seismological observatories was used for seismic data processing (reading, writing,
etc.) [Megies et al., 2011, Beyreuther et al., 2010].

Each step of procedure can be modified to meet any special requirements. Programs are more
or less optimized. Total calculation (for whole PASSEQ 2006-2008 data set in Poland) took about
five days on four modern desktop computers. Further code optimizations are possible (migrate
everything to single C++ program) but not necessary for calculation presented in this paper.

Figure 3.1
Software used for analysis.
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3.1 Data preparation

The PASSEQ 2006-2008 data was downloaded from GFZ in 24-hour miniseed files. Over 2.5 TB
of data was stored locally. Unfortunately most data files were corrupted in one or more of following
ways:

• some files contained multiple overlapping traces in one file,

• some day files did not start at midnight and did not cover whole 24-hours,

• files had different size of data blocks,

• some data samples were missing,

• some files were big endian while other were little endian.

Before any further processing data set had to be unified and cleaned. For that purposes ObsPy
and special Python script was created. Its aim was to:

• clean overlaps,

• unify block size to 4096 bits,

• select only Z-component,

• save cleaned data to 60-minute files starting every 30 minutes,

• file with samples missing were omitted.

30-minute overlapping of data files was useful during detection and will be described in next
sections.

A source code of data preparation script is shown in Listing 3.1. Details about script are given
in in-line comments.

Listing 3.1
Python script for data preparation

1 #!/ usr/bin/env python
2
3 # Import all necesary tools and toolboxes :
4 import glob
5 from obspy .core import read , Stream , Trace
6 from obspy .core import UTCDateTime
7 from time import strftime
8 import os
9 import sys

10
11 # Set time range of data preparation :
12 global_time_start = 1136116800 #2006 -01 -01 12:00
13 global_time_end = 1230638400 #2008 -12 -30 12:00
14
15 # Station name is given as command line parameter :
16 station = sys.argv [1]
17
18 # Set input and output paths for data files :
19 path = ’/ INPUT_PATH /’ + station + ’/’
20 output_path = ’/ OUTPUT_PATH /’ + station + ’/’
21
22 # Check if output path exists . If not create directory :
23 if not os.path. exists ( output_path ):
24 os. makedirs ( output_path )
25
26 # Generate array of days in time range
27 step = 24*3600
28 global_times = range (int( global_time_start ),int( global_time_end ), int(step))
29
30 # Loop through all days and process them:
31 for start_time in global_times :
32 # Change date format
33 UTC_start_time = UTCDateTime ( start_time ). getDateTime ()
34
35 # Calculate two dates : current day and next day:

10



36 UTC_file1 = UTCDateTime ( start_time ). getDateTime ()
37 UTC_file2 = UTCDateTime ( start_time +24*3600) . getDateTime ()
38
39 # Inform user about progress :
40 print ’Processing station ’ + station + ’ @ ’ + UTC_file1 . strftime ("%Y -%m -%d %H

:%M:%S") + ’ to ’ + UTC_file2 . strftime ("%Y -%m -%d %H:%M:%S")
41
42 # Prepare paths of two data files - current and next day:
43 file1 = path + UTC_file1 . strftime ( station + ’_%Y -%m -%d. mseed ’)
44 file2 = path + UTC_file2 . strftime ( station + ’_%Y -%m -%d. mseed ’)
45
46 # Get file sizes :
47 size1 = os.path. getsize ( file1 )
48 size2 = os.path. getsize ( file2 )
49
50 # check if first file exists . If yes load it to memory . If not create empty

trace :
51 if size1 > 0:
52 A = read( file1 )
53 else :
54 A= Stream ( Trace ())
55
56 # check if second file exists . If yes load it to memory . If not create empty

trace :
57 if size2 > 0:
58 B = read( file2 )
59 else :
60 B= Stream ( Trace ())
61
62 # Combine two loaded files :
63 DATA = A + B
64
65 # Select only Z- component
66 DATAZ = DATA. select ( channel ="BHZ")
67
68 # Clean overlaps in data
69 DATAZ . _cleanup ()
70
71 # Create array of start times of hour blocks every 30 minutes :
72 step2 = 3600
73 local_times = range (int( start_time ),int( start_time +step), int( step2 /2))
74
75 # Process every hour between 12:00 current day and 12:00 next day:
76 # Every trace in combined file is analyzed separatly :
77 for trace_num in range (len( DATAZ )):
78
79 # Get current trace :
80 TRACE = DATAZ [ trace_num ]
81
82 # Process every hour:
83 for local_start_time in local_times :
84
85 # Create local instance of trace and trim it to current hour:
86 LOCAL_TRACE = TRACE .copy ()
87 LOCAL_TRACE .trim( UTCDateTime ( local_start_time ),UTCDateTime (

local_start_time )+ step2 )
88
89 # Check if there is no samples missing in trimmed trace :
90 if LOCAL_TRACE . stats .npts > step2 * LOCAL_TRACE . stats . sampling_rate -

1:
91
92 # Calculate trace start time:
93 UTC_trace_time = UTCDateTime ( local_start_time )
94
95 # Write trace to file in output path
96 LOCAL_TRACE . write ( output_path + UTC_trace_time . strftime ( station + "

_%Y -%m -% d_%H -%M -%S") + ’. mseed ’, format =" MSEED ")

11



3.2 Signal detection

A detection goal was to analyze continues time series (seismic record) and provide list of mo-
ments where possible signal (seismic wave) was recorded. Main python function was prepared to
return a list of signal detections for a given file name (already prepared one-hour, one station, one
component miniseed file).

The analysis is done in three steps: data loading, filtration and detection of signal.
Data loading. Data file was loaded from repository.
Filtration. Data was filtered with zero-phase bandpass Butterworth filter (from 4.0Hz to

9.5Hz). After filtration mean value of trace was removed and amplitude has been normalized to
constant value (the same value for all stations). An example of filtration of broadband trace is
shown in Figure 3.2.

Detection of signal. The simplest detector is amplitude threshold: if recorded signal has
amplitude higher then threshold detection is noted. This type of detector is of course of poor
quality because of noisiness of the recording. A detector has to adapt to current conditions (eg.
noise level). The simplest way to create such a detector is calculating two moving averages over
signal with different windows: short and long. Most of seismic detectors use relation between short
term average (STA) and long term average (LTA).

In this paper Carl Johnson’s STA/LTA detection algorithm was used. This algorithm calculates
four moving averages and takes two parameters:

eta = star − (ratio ∗ ltar) − abs(sta − lta) − quiet,

where:

• eta - detector response - value over 0 means detection,

• sta - short term moving average of signal,

• lta - long term moving average of signal,

• star - short term moving average of absolute value of signal and lta difference,

• ltar - long term moving average of star,

• ratio and quiet - sensitivity parameters.

It is recommended for long term average to be 8 times longer then short time average. In this
paper short term average had 4 seconds window and long term average had 32 seconds window.
Both ratio and quiet parameters had value 2.

bandpass 4.0Hz to 9.5Hz

no filter

Figure 3.2
30 minute recording of station PA64 in August 24th 2006. Event of magnitude M2.5 was recorded at

15:03.
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Figure 3.3
30 minute recording of station PA64 in August 24th 2006. M2.5 event was recorded at 15:03. Upper,

black curve is recorder signal. Bottom, red curve is detector response.

Carl Johnson’s STA/LTA was originally implemented in ObsPy toolbox but it’s performance
was extremely poor: over 20 seconds was required to calculate detection in one hour data block.
Carl Johnson’s STA/LTA algorithm was optimized by author and implemented in C++ as Python
module. Performance increase to 0.1 second per one hour block was achieved. Both implementa-
tions are shown and compared in Appendix B.

Values of moving averages have to stabilize in every processed file, and for that reason only
detection from middle 30 minutes of every file were taken for further analysis. Example of detection
for broadband station is shown in Figure 3.3.

Detector response to signal is time series of the same size like signal itself. It has to be analyzed
to provide list of points in time where detection occurred. Every value above 0 means detection, so
for providing list of detection times it was necessary to loop through detector response over time
and locate points where detection curve (eta) changed value from negative to positive (detection
time) and positive to negative (to calculate duration of detection). Additionally maximum and
mean value of eta was noted for every detection.

PASSEQ 2006-2008 data set of Poland is almost 2.5 million one-hour data files (note that data
set is doubled due to overlapping). A list of files was stored in MySQL database which kept track
of which data file was already processed. The same database was used for storing information
about detections (finally there were over 40 million detections). Using database for information
storage allowed parallel processing of data files on multi core computer and multiple computers (in
the same network). The signal detection for whole PASSEQ 2006-2008 data set took about three
days on standard 8-core desktop computer. Full source code used for signal detection is shown in
Listing 3.2. See in-line comments for more information.

Listing 3.2
Python script for signal detection

1 #!/ usr/bin/env python
2
3 # Import all necesary tools and toolboxes :
4 import glob
5 import matplotlib
6 matplotlib .use(’Agg ’)
7 from pylab import *
8 import matplotlib . pyplot as plt
9 from obspy .core import read

10 from obspy .core import UTCDateTime
11 from obspy . signal . trigger import *
12 from time import strftime
13 import numpy as np
14 import time
15 import urllib2
16 import string
17 import sys
18 import string
19 from matplotlib import dates
20 from obspy .taup.taup import *
21 from obspy . signal import cornFreq2Paz
22 import _mysql
23 from multiprocessing import Pool
24 import carlStaTrigC
25

13



26
27 # Definition of ProcessFile function .
28 # This function runs detection process over one data file (1- hour)
29 def ProcessFile (x):
30
31 # Start clock - performance monitoring "
32 t0 = time.time ();
33
34 # Set input and output paths for data files :
35 input_dir = ’/ INPUT_PATH /’ + station + ’/’
36 output_dir = ’/ OUTPUT_PATH /’ + station + ’/’
37
38 # Connect to database :
39 db = _mysql . connect (host="***", user="***", passwd ="***", db="***")
40
41 # Get number of files needed to be processed
42 db. query (" SELECT count (*) FROM traces WHERE done = 0;")
43 mr = db. use_result (). fetch_row ()
44 db. close ()
45
46 # Check if there are files to be processed :
47 if int(mr [0][0]) > 0:
48
49 # For performance reason new database connection is opened :
50 db = _mysql . connect (host="***", user="***", passwd ="***", db="***")
51
52 # Lock tables in database . It is not possible for two threds to analyze the

same data file at once:
53 db. query ("LOCK TABLES traces WRITE ;")
54
55 # Select data file to be analyzed :
56 db. query (" SELECT uid , stacja , plik FROM traces WHERE done = 0 order by date

LIMIT 1;")
57 mr = db. use_result (). fetch_row ()
58
59 # Flag selected file as "in progress "
60 db. query (" UPDATE traces SET done = -1 WHERE uid = " + str(mr [0][0]) + ";")
61
62 # Unlock tables - other thread can now select their files :
63 db. query (" UNLOCK TABLES ;")
64
65 # Compose path of file to be analyzed :
66 file = input_dir + mr [0][1] + ’/’ + mr [0][2]
67
68 # Process file name:
69 date_name = mr [0][2];
70 date_name = string . replace (date_name ,mr [0][2] + ’_’,’’)
71 date_name = string . replace (date_name ,’. mseed ’,’’)
72
73 # Load data file into memory :
74 data = read(file)
75
76 # Cleanup data file (just in case):
77 data. _cleanup ();
78
79 # Select main trace in loaded file:
80 trace = data [0]
81
82 # Get loading time and start new timer :
83 load_time = str(time.time () -t0)
84 t0 = time.time ();
85
86 # Declare step variable in seconds
87 step = 3600;
88
89 # Declare variables describing trace :
90 # Start time:
91 ts = trace . stats . starttime
92 # End time:
93 te = trace . stats . endtime
94 # Time between samples :
95 df = trace . stats . delta
96 # sampling rate:
97 sr = trace . stats . sampling_rate
98
99 # Only middle 30 minutes of trace are analyzed :
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100 hide = 15*60;
101 okno = 30*60;
102 xlim_max = (hide + okno)/60
103 xlim_min = hide /60
104
105 # Apply bandpass filter to trace :
106 trace . filter (’bandpass ’,freqmin =4.0 , freqmax =9.5 , corners =2, zerophase =True

)
107
108 # Remove mean value from trace
109 trace .data = trace .data - trace .data.mean ()
110
111 # Normalize trace :
112 trace .data = trace .data / max(np. absolute ( trace .data))
113 trace .data = trace .data * 100000
114
115 # Compute Carl Johnson ’s STA/LTA detector response :
116 cft = np. array ( carlStaTrigC . compute ( trace .data. tolist () , int (4 * sr), int

(32 * sr), 2, 2))
117
118 # Get only parts of detector response greater than 0:
119 cft = np. where (cft >0,cft ,0)
120
121 # Process all detector triggers :
122 for on_of in triggerOnset (cft , 0.0 , 0.0):
123
124 # Check if detection starts in middle 30 minutes :
125 if trace . stats . starttime . timestamp + on_of [0]/ sr > trace . stats .

starttime . timestamp + hide:
126 if trace . stats . starttime . timestamp + on_of [0]/ sr < trace . stats .

starttime . timestamp + hide + okno:
127
128 # Calculate time of trigger start
129 trigger_start_time = ( trace . stats . starttime . timestamp + on_of

[0]/ sr)
130
131 # Calculate duration of trigger :
132 trigger_length = ( on_of [1] - on_of [0]) / sr
133
134 # Process trigger :
135 cft_triggered = cft[ on_of [0]: on_of [1]]
136 if cft_triggered .any ():
137
138 # Calculate trigger max value
139 trigger_max = max( cft_triggered )
140
141 # Calculate trigger mean value
142 trigger_mean = sum( cft_triggered )/( on_of [1] - on_of [0])
143
144 # Insert trigger parameters to database :
145 msg = "’" + trace . stats . station + "’," + str(

trigger_start_time ) + "," + str( trigger_length ) + "," +
str( trigger_max ) + "," + str( trigger_mean ) + ""

146 db. query (" INSERT INTO ‘trigger ‘ VALUES (NULL , " + msg + ");"
)

147
148 # Flag file as processed :
149 db. query (" UPDATE traces SET done = 1 WHERE uid = " + str(mr [0][0]) + ";")
150
151 # Close database connection :
152 db. close ()
153
154 # Display information about loading and processing time:
155 print ’\ tData loaded in: ’ + load_time + "\t" + ’End: ’ + str(time.time () -

t0)
156
157
158 # Detection script is prepared to run on multicore systems .
159 # Check if current thread is main. Only main thred can invoke other threads :
160 if __name__ == ’__main__ ’:
161
162 # Connect to database :
163 db = _mysql . connect (host="***", user="***", passwd ="***", db="***")
164
165 # Get number of files needed to be processed
166 db. query (" SELECT count (*) FROM traces WHERE done = 0;")
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167 mr = db. use_result (). fetch_row ()
168 db. close ()
169 count = int(mr [0][0])
170
171 # Start threads pool for 8-core system :
172 pool = Pool( processes =8)
173
174 # Supporting variable optimize is used later in loop:
175 optimize = 0
176
177 # Work while number of files to process reaches 0:
178 while count > 0:
179
180 # For performance reason new database connection is opened :
181 db = _mysql . connect (host="***", user="***", passwd ="***", db="***")
182
183 # Get number of files needed to be processed
184 db. query (" SELECT count (*) FROM traces WHERE done = 0;")
185 mr = db. use_result (). fetch_row ()
186 count = int(mr [0][0])
187
188 # Optimize database table every 800 (100 * 8 cores ) files processed
189 if optimize == 100:
190 db. query (" OPTIMIZE TABLE traces ;");
191 print " optimized "
192 optimize = 0;
193 optimize = optimize + 1
194
195 # Close database connection :
196 db. close ()
197
198 # Inform user about progress
199 print count
200
201 # Start 8 parallel instances of ProcessFile function :
202 pool.map( ProcessFile , range (8))
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3.3 Event grid searching

In previous section a process of detection was described. Unfortunately single station detection
cannot be used for seismic event finding. A detector responses to seismic waves but also responses
to noise. Additional analysis of detection signals is required to recognize local seismic events.

All methods of such analysis are based on coincidence of detection signals on different stations.
In this paper grid search method was used. Grid searching is simply a method of testing if given
locations in given times could have been a source of seismic wave [Sambridge and Kennett, 1986].
Area that is being analyzed should be divided into grid. In case of this paper grid of size 0.05 by
0.05 degrees was taken.

Analysis were done one day at the time. A list of detections from all stations for that day was
taken. For every grid cell number of operating stations in 150 km radius was calculated. If there
was at least 15 working stations traveltime between analyzed grid cell and all stations in radius
was calculated using 1-D reference iasp91 model [Kennett and Engdahl, 1991] (Figure 3.4). All
detections were moved back in time by calculated traveltime (different times for different stations!).
Then a number of stations in radius with detection signals for every second of analyzed day was
calculated. Detections were considered with 3 second tolerance. When number of stations giving
detection exceeded 50% of total stations in radius event was noted (time, cell coordinates and
number of stations).

After processing all grid cells, a list of times of possible events was generated. A location of
possible events was calculated as a weighted average of coordinates of all grid cells that detected
at this time. A weight of average equaled to percent of stations giving detection. This is a main
advantage of grid search method - a location of detected event is easy to determine.

For better method understanding illustrated step-by-step example is given.
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P- and S-wave velocity in iasp91 model up to 1000 km depth (left), traveltime of P-wave in iasp91

model up to 1000 km distance (right).
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3.3.1 Step-by-step example

An example is based on confirmed M3.5 event in Lubin area. Figure 3.5 shows stations being
analyzed and location of two test grid cells (A, B) and Figure 3.6 shows recordings from these
stations at their original time. It’s clear that some event was recorded at every station but there
is no indication if it was the same event and what was its location.

Time shift procedure was preformed assuming event location A and B. Shifted records for
location A are shown in Figure 3.8 and for location B in Figure 3.7. It’s well noticeable that
shifted recordings for location A are aligned to approximately the same time - the time of origin
of event. In that case it can be assumed that the event occurred near to location A.

Because detection times are taken with 3 second tolerance the closer analyzed cell is to pos-
sible event location, the more stations are taking part in coincidence. Figure 3.9 shows map of
coincidence level (number of station with detection to total number of stations) for analyzed event
calculated in every grid cell in Poland.

14˚

14˚

16˚

16˚

18˚

18˚

20˚

20˚

22˚

22˚

24˚

24˚

50˚ 50˚

52˚ 52˚

54˚ 54˚

100 km

Baltic Sea

Warsaw

RU
LT

BY

UA

SK

CZ

DE A

B

PA64

PD41

PD42

PD43

PP41

PQ46

broadband

short−period

test location

Figure 3.5
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Grid search example: recordings of six PASSEQ 2006-2008 stations. X-axis shows original time of

recording.
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Grid search example: recordings for location B of six PASSEQ 2006-2008 stations. X-axis shows
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Figure 3.8
Grid search example: recordings for location A. Other explanations like in Figure 3.7.
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Chapter 4

Results

4.1 Event selection

After analyzing whole PASSEQ 2006-2008 data set for Poland over 3500 events were automat-
ically detected. This list was then filtered to eliminate noise-only detections. Filtration was done
by eliminating events visible in less than 20 grid cells.

New list consisted of 1206 events was analyzed. Events in the area of Lubin and Śląsk were
not analyzed due to high and known level of seismicity in this areas. These events were used for
determining method accuracy (detection and location). Only 46 events from other areas of Poland
were on the list.

Figure 4.1 shows all 1206 possible events. 46 events out of Lubin where analyzed separately.
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Figure 4.1
Location of epicenters of possible 1206 events based on automated detection and grid search method.
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4.2 Event detection and location accuracy

Two aspects of accuracy were discussed for selected time period from August 1st, 2008 to
October 31st, 2008. First one is a detection efficiency: how many events are detected out of known
events from station and local bulletins. Periods where number of operating stations was insufficient
for grid search algorithm were omitted.

Expected level of 80% efficiency was achieved for this period of time. 20% of events were not
detected for multiple reasons including:

• high noise on station,

• occurring at the same time as bigger teleseismic event,

• small magnitude of event (under M1.9),

• other, unknown.

Location of bigger events (M>2.8) from Local Bulletins was compared with location given by
grid search algorithm. The location difference varies from 1 to 28 km with mean value of 10 km.
A histogram of location differences for 53 events is shown in Figure 4.2.
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Figure 4.2
Histogram of event location accuracy (difference between bulletin and grid search location). Total of

53 Lubin events were analyzed from August 1st 2006 to October 31st 2006.
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4.3 Detected events

46 possible events out of Lubin were manually analyzed:

• 30 were accidental detection of bigger known event,

• 12 were just accidental noise coincidence,

• 4 were real seismic events.

4.3.1 Event near Jarocin, May 6th 2007

Unlisted, strong seismic event was located near Jarocin (52.02◦N, 17.48◦E). Its magnitude was
estimated to 2.5 by comparison to Lubin events. Event occurred in May 6th, 2007 around 07:32:30
UTC.

There was a strong event of M3.9 (52.026◦N, 17.529◦E) almost in the same place in January
6th, 2012. Both events were probably caused by tectonic stress. Jarocin is located about 100 km
from the TESZ border, so this evens can be connected to this area. Grid search result is shown
in Figure 4.3. Figures 4.4 and 4.5 show seismograms of event at neighbor stations. See figure
descriptions for more information.
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Figure 4.4
Vertical seismic traces of Jarocin event, May 6th, 2007 with original time at stations. All stations in

radius of 150km from source are shown (codes of stations on the left).
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Figure 4.5
Vertical seismic traces of Jarocin event, May 6th, 2007 with shifted time for calculated source

coordinates (52.02◦N, 17.48◦E). All detection stations in radius of 150km from source are shown
(codes of stations on the left).
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4.3.2 Event in Baltic Sea, September 12th 2006

Unknown event was detected in the Bay of Gdańsk. Grid search was performed only on land,
so location of this event was found manually (manual grid searching): 54.55◦N, 19.32◦E. Time of
event was determined to 15:12:14 UTC.

Figure 4.6 shows event location and Figure 4.7 shows time shifted traces of PASSEQ 2006-2008
stations around.

14˚

14˚

16˚

16˚

18˚

18˚

20˚

20˚

22˚

22˚

24˚

24˚

50˚ 50˚

52˚ 52˚

54˚ 54˚

100 km

Trans European Suture Zone

Baltic Sea

Warsaw

RU
LT

BY

UA

SK

CZ

DE

Figure 4.6
Location of event in Baltic Sea (Bay of Gdańsk), September 12th 2006.
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Figure 4.7
Vertical seismic recording of event in Baltic Sea (Bay of Gdańsk), September 12th 2006.
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4.3.3 Event in Baltic Sea, March 20th 2007

Third event was also detected in the Bay of Gdańsk. Grid search was performed only on land,
so location of this event was found manually (manual grid searching): 54.60◦N, 18.75◦E. Time of
event was determined to 23:08:51 UTC. This event was listed in emsc-csem.org catalog but was
located in Gotland, Sweden. Magnitude was not estimated.

Figure 4.8 shows event location and Figure 4.9 shows time shifted seismic records of PASSEQ
2006-2008 stations around.
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Figure 4.8
Location of event in Baltic Sea (Bay of Gdańsk), March 20th 2007.
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Figure 4.9
Vertical seismic recording of event in Baltic Sea (Bay of Gdańsk), March 20th 2007.
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4.3.4 Event in Baltic Sea, May 2nd 2007

Last event was also detected in the Bay of Gdańsk. Grid search was performed only on land,
so location of this event was found manually (manual grid searching): 54.69◦N, 19.17◦E. Time of
event was determined to 07:08:23 UTC. This event was listed in emsc-csem.org catalog but it was
located in the middle of Baltic Sea. Magnitude was not estimated.

Figure 4.10 shows event location and Figure 4.11 shows time shifted seismic records of PASSEQ
2006-2008 stations around.
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Figure 4.10
Location of event in Baltic Sea (Bay of Gdańsk), May 2nd 2007.
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Figure 4.11
Vertical seismic recording of event in Baltic Sea (Bay of Gdańsk), May 2nd 2007.
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Chapter 5

Summary

PASSEQ 2006-2008 data set for Poland was processed to detect local seismic events in Poland.
Carl Johnson’s STA/LTA detection algorithm was used with grid search method. All significant
programs and script required for this analysis were prepared specially for purposes of this paper.
The list of 1206 possible seismic events were prepared (Figure 4.1). 46 events from regions with
unknown seismicity were selected for detailed analysis. Finally 4 events were confirmed detection
(others were effect of bigger events or seismic noise, Figure 5.1):

• Event in Baltic Sea, September 12th 2006 15:12:14 UTC, 54.55◦N, 19.32◦E,

• Event in Baltic Sea, March 20th 2007 23:08:51 UTC, 54.60◦N, 18.75◦E,

• Event in Baltic Sea, May 2nd 2007 07:08:23 UTC, 54.69◦N, 19.17◦E,

• Event near Jarocin, May 6th 2007 07:32:30 UTC, 52.02◦N, 17.48◦E.

Event near Jarocin was clearly caused by tectonic stress (similar, stronger event happened in
this area in 2012) while three events in Baltic Sea may have been caused by military exercises of
Polish Navy [Meyer and Kulhanek, 1981, Wiejacz and Debski, 2001].

No events in the area of TESZ were detected. Recording quality and distribution of stations
made detection of small events (under M1.8) impossible. This allows to formulate paper conclusion:

There was no significant seismic activity in the area of the Trans European Suture
Zone during PASSEQ 2006-2008 experiment.
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Figure 5.1
Location of four detected and analyzed seismic events.
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Appendix A

Bulletins of Polish seismic
observatories

Two types of data sources about local seismic events exist in Poland:

1. Station Bulletins - contain lists of most events with determined time of seismic phases, but
does not provide information about event locations. Example of Station Bulletin is shown in
Listing A.1,

2. Local bulletins - contain lists of bigger local events in Poland with their location. Example
of Local Bulletin is shown in Listing A.2.

Both bulletins are prepared by Institute of Geophysics P.A.S. in Warsaw. They are available
at institute web page: http://igf.edu.pl/.

Listing A.1
Fragment of KSP Station Bulletin in August 1st 2006

1 KSP Aug 2006
2
3 Aug01 Mm = 2.2 Lubin d=79 km
4 ePg Z 02 41 02.7
5 eSg E 41 12.2
6
7 Aug01 Mm = 2.1 Lubin d=63 km
8 ePg Z 03 02 11.3
9 eSg E 02 18.9

10
11 Aug01 Mm = 1.6 Walbrzych Reg. d=41 km
12 ePg E 05 09 20.6
13 eSg N 09 25.7
14
15 Aug01 Mm = 2.5 Silesia d=204 km
16 ePg N 05 24 24.5
17 eSg E 24 48.4
18
19 Aug01 Mm = 1.9 Walbrzych Reg. d=66 km
20 ePg Z 08 27 43.2
21 eSg E 27 51.3
22
23 Aug01 Mm = 2.1 Walbrzych Reg. d=34 km
24 ePg Z 08 39 43.5
25 eSg N 39 47.6
26
27 Aug01 Mm = 2.2 Silesia d=174 km
28 ePg Z 08 51 57.2
29 eSg N 52 17.7
30
31 Aug01 Mm = 1.9 d=150 km
32 ePg Z 09 11 52.1
33 eSg N 12 10.2
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Listing A.2
Fragment of Local Bulletin in January 17th 2007

1 JAN 17
2 fi = 51.481 ◦N , la = 16.101 ◦ E
3 H = 17:27:39.7 , M = 3.1
4
5 KSP d= 72.2 km
6 Pg eZ 17 27 51.84
7 Sg eE 17 28 00.54
8 Z 17 28 03.9
9

10 OJC d= 295.0 km
11 Pg eZ 17 28 29.8
12 Sg eN 17 29 04.9
13 NIE d= 376.1 km
14 P eZ 17 28 42.8
15 S eN 17 29 27.1
16 RAC d= 214.0 km
17 Pg eZ 17 28 14.4
18 Sg eE 17 28 40.3
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Appendix B

Carl Johnson’s STA/LTA
performance

ObsPy implementation of Carl Johnson’s STA/LTA is available as standard python function
in ObsPy.signal toolbox. Its source code is shown in Listing B.1. In this implementation moving
average is calculated by repeating summation of all elements in window. If trace is 1-hour long
with 100Hz sampling and average window is 32 seconds, average is calculated 356800 times and
each time 3200 values are summed.

To increase performance other method of calculating moving average was used: a sum of values
in window is kept in memory and for every window move one value is subtracted (went out of
window) and one value is added (new in window).

This combined with switching to C++ allowed to increase speed of detection from 20 second
per trace to 0.1 seconds per trace.

Source of new implementation of Carl Johnson’s STA/LTA is shown in Listing B.2. This python
module should be compiled for every machine separately (32 and 64 bit).

Listing B.1
Source code of original Carl Johnson’s STA/LTA from ObsPy toolbox

1 def carlSTATrig (a, nsta , nlta , ratio , quiet ):
2 """
3 Computes the carlSTATrig characteristic function .
4
5 eta = star - ( ratio * ltar) - abs(sta - lta) - quiet
6
7 :type a: NumPy ndarray
8 : param a: Seismic Trace
9 :type nsta: Int

10 : param nsta: Length of short time average window in samples
11 :type nlta: Int
12 : param nlta: Length of long time average window in samples
13 :type ration : Float
14 : param ratio : as ratio gets smaller , carlSTATrig gets more sensitive
15 :type quiet : Float
16 : param quiet : as quiet gets smaller , carlSTATrig gets more sensitive
17 : rtype : NumPy ndarray
18 : return : Characteristic function of CarlStaTrig
19 """
20 m = len(a)
21 #
22 sta = np. zeros (len(a), dtype =’float64 ’)
23 lta = np. zeros (len(a), dtype =’float64 ’)
24 star = np. zeros (len(a), dtype =’float64 ’)
25 ltar = np. zeros (len(a), dtype =’float64 ’)
26 pad_sta = np. zeros (nsta)
27 pad_lta = np. zeros (nlta) # avoid for 0 division 0/1=0
28 #
29 # compute the short time average (STA)
30 for i in xrange (nsta): # window size to smooth over
31 sta += np. concatenate (( pad_sta , a[i:m - nsta + i]))
32 sta /= nsta
33 #
34 # compute the long time average (LTA), 8 sec average over sta
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35 for i in xrange (nlta): # window size to smooth over
36 lta += np. concatenate (( pad_lta , sta[i:m - nlta + i]))
37 lta /= nlta
38 lta = np. concatenate (( np. zeros (1) , lta))[:m] # XXX ???
39 #
40 # compute star , average of abs diff between trace and lta
41 for i in xrange (nsta): # window size to smooth over
42 star += np. concatenate (( pad_sta , abs(a[i:m - nsta + i] - lta[i:m - nsta + i

])))
43 star /= nsta
44 #
45 # compute ltar , 8 sec average over star
46 for i in xrange (nlta): # window size to smooth over
47 ltar += np. concatenate (( pad_lta , star[i:m - nlta + i]))
48 ltar /= nlta
49 #
50 eta = star - ( ratio * ltar) - abs(sta - lta) - quiet
51 eta [: nlta] = -1.0
52 return eta

Listing B.2
Source code of C++ implementation (Python module) of modified Carl Johnson’s STA/LTA

algorithm
1 # include <Python .h>
2 # include <stdio .h>
3 # include <stdlib .h>
4 # include <math.h>
5
6 double * trace ;
7 double *sta;
8 double *lta;
9 double *star;

10 double *ltar;
11 double *tmp;
12 double *eta;
13
14
15 // Function for calculating average using new algorithm :
16 void srednia ( double *input , double *output , int length , int window )
17 {
18 double sum = 0;
19 int i, j;
20 for(j=0;j< window ;j++)
21 {
22 sum += input [window -j -1];
23 }
24 output [window -1]= sum /( double ) window ;
25
26 for(i = window ; i < length ; i++)
27 {
28 sum = sum + input [i] - input [i- window ];
29 output [i]= sum /( double ) window ;
30 }
31 }
32
33 // Main function
34 static PyObject * compute ( PyObject * self , PyObject * args)
35 {
36 PyObject * listObj ;
37 int nsta;
38 int nlta;
39 double ratio ;
40 double quiet ;
41 double sum = 0.0;
42 if (! PyArg_ParseTuple ( args , "O!iidd", & PyList_Type , &listObj , &nsta , &nlta , &

ratio , & quiet )) return NULL;
43 int N = PyList_Size ( listObj );
44
45 trace = ( double *) malloc (N* sizeof ( double ));
46 sta = ( double *) malloc (N* sizeof ( double ));
47 lta = ( double *) malloc (N* sizeof ( double ));
48 star = ( double *) malloc (N* sizeof ( double ));
49 ltar = ( double *) malloc (N* sizeof ( double ));
50 eta = ( double *) malloc (N* sizeof ( double ));
51 tmp = ( double *) malloc (N* sizeof ( double ));
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52
53 int i;
54 for(i = 0; i<N; i++)
55 {
56 sta[i] = 0;
57 lta[i] = 0;
58 star[i] = 0;
59 ltar[i] = 0;
60 eta[i] = 0;
61 tmp[i] = 0;
62 }
63
64 for(i=0;i<N;i++)
65 {
66 trace [i] = ( double ) PyFloat_AsDouble ( PyList_GetItem (listObj , i));
67 sum += trace [i];
68 }
69
70
71
72 srednia (trace , sta , N, nsta);
73 srednia (sta , lta , N, nlta);
74 for(i = 0; i < N; i++)
75 {
76 if(i < nlta)
77 lta[i]=0;
78 tmp[i] = abs( trace [i]-lta[i]);
79 }
80 srednia (tmp ,star ,N,nsta);
81 srednia (star , ltar , N, nlta);
82
83 for(i = 0; i < N; i++)
84 {
85 if(i > nlta)
86 {
87 eta[i] = star[i] - ( ratio * ltar[i]) - abs(sta[i] - lta[i]) - quiet ;
88 }
89 else
90 {
91 eta[i] = -1;
92 }
93 }
94
95
96
97
98
99 PyObject * result = PyList_New (N);

100 for(i=0;i<N;i++)
101 {
102 PyObject *op = PyFloat_FromDouble (( double )eta[i]);
103 PyList_SetItem (result ,i,op);
104 }
105
106 return Py_BuildValue ("N", result );
107 }
108
109 static char carl_docs [] = " carlStaTrigC ( ): no documentation !!\n";
110
111 static PyMethodDef carl_funcs [] = {{" compute ", ( PyCFunction )compute , METH_VARARGS ,

carl_docs },{ NULL }};
112
113 void initcarlStaTrigC ( void )
114 {
115 Py_InitModule3 (" carlStaTrigC ", carl_funcs , "Carl Sta Trig Module !");
116 }
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